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The generalized nonadiabatic transition-state theory (NA-TST) (Zhao, Y.; &t @hem. Phys2004 121,

8854) is used to study electron transfer with use of the-Atakamura (ZN) formulas of nonadiabatic transition

in the case of fast dielectric relaxation. The rate constant is expressed as a product of the well-known Marcus
formula and a coefficient which represents the correction due to the strong electronic coupling. In the case
of general multidimensional systems, the Monte Carlo approach is utilized to evaluate the rate by taking into
account the multidimensionality of the crossing seam surface. Numerical demonstration is made by using a
model system of a collection of harmonic oscillators in the Marcus normal region. The results are naturally
coincident with the perturbation theory in the weak electronic coupling limit; while in the intermediate to
strong electronic coupling regime where the perturbation theory breaks down the present results are in good
agreement with those from the quantum mechanicaHflux correlation function within the model of effective
one-dimensional mode.

1. Introduction different from the nonadiabatic one with slow solvent polariza-
) ) ] tion modes. Several works have clarified the differerfcédn
The present paper is an extension of our earlier Wéok the limit of fast dielectric relaxation, on the other hand, ET rate

the discussion of nonadiabatic chemical reactions to electron;s jngependent of the relaxation properties of the solvent and
transfer (ET) in the intermediate to strong electronic coupling the traditional thermal equilibrium formulation is applicable.
in the limit of fast solvent relaxation. In the previous paper, we | the present paper, we will study the ET in this limit, while
incorporated the ZhuNakamura (ZN) theory for the two-state  |e3ying the discussions on the solvent dynamical effects for
curve crossing problem into the nonadiabatic transition-state f,¢re study.

theory (NA-TST). The approach has been applied to the one- From the very beginning of the development of the ET

and two-dimensional systems with exponential and Morse theory®~11it has been recognized that the perturbation theory

d|abaF|c potential energy surfaces (PES) and expon_entlal d'ab‘_r"t'cis applicable for a weak coupling regime (nonadiabatic limit)
coupling. The numerical results demonstrated its potential

licabilit and the adiabatic transition-state theory can be used in the strong

appiica ”,y' ) ) L coupling limit to describe reactions as taking place on the

The ET in the strong electro_nlc coupllng regime is frequently_ adiabatic PES. Since then, numerous attempts have been
related to the solvent dynamical relaxation processes. In this yngertaken to try to develop a unified theory to incorporate these
case, the electronic coupling itself may not be a sufficient factor o imits in a consistent wa§?z 2
to justify the usage of nonadiabatic or adiabatic theory. If the o ¢jassical and semiclassical treatments of ET thermal rate
solvent relaxation is very slow compared with the ET process, j5ve a long history, and the well-known Maretidush
then multiple crossings of the transition region become possible goic|assical formuf#?has been continuously used in the field.
even in t.he Wgak coupling region. As a result_, h|gher o_rder In this formula, the thermally averaged Landezener (LZ)
perturbation with respect to the electronic coupling is required. ynsmission probabilij-24is used to connect the nonadiabatic
Ulltlmate_ly, the l_reactlli)ns_ car;] begome |nde;|)endent of ”thgz and adiabatic limits. The nuclear tunneling effect is additionally
electronic coupling, that Is, they become solvent-controlled ,.,yorated independently from the electronic transition, which

adllabatlg reactllonsowhlrlle Zt'" _nor}aﬁlabqtlg Inl the lfbfsednce of cannot be a proper procedure since the electronic transition and
solvent dynamics. On the basis of the original works indepen- | \~jaar tunneling cannot be separated.

dently done by Zusmarnd Burshtein and co-workets, large To treat multidimensional ET problems, the idea of effective

number of thgoretical approaches have be_en proposed to tr.eaﬂequency is introduced to match the multi-mode LZ transmis-
the competition between solvent rglaxatlon anq electronic sion coefficien£>26The validity of the one-dimensional model
transitions in the case of strong coupling (see, for instance, ref based on the LZ formula, however, is criticized (see, e.g., ref

4 and references therein). Yet, the true adiabatic process IS4) when it is applied to a system of reaction coordinates coupled

—— to a bath. Rips and Polldk?® have introduced an optimized
ustcz%l]"’chr?m correspondence should be addressed. E-mail: yizhao@ yeaction coordinate to solve this problem. They use a canonical
t University of Science and Technology of China. transformation to optimize the reaction path and maximize its

* National Institutes of Natural Sciences. mean free path in the vicinity of the crossing point. When the
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mean free path is longer than the characteristic LZ length, the fast relaxation. The numerical tests of the present approach have

LZ formula is applicable. found that the matching technique to fit multi-mode by one
The electron transfer in a multidimensional space can be €ffective modé can give a very good result in the wide range
directly treated by using the surface hopping techrigdé of electronic coupling strength and temperature except in the

without explicitly introducing a one-dimensional reaction deep tunneling region for symmetric ET reactions. Thus, instead
coordinate in configuration space. The transition probability is ©f carrying out computations of a multidimensional system
evaluated on the seam surface in the instantaneous normal-modéirectly, we can rigorously evaluate the ET rate by the quantum
coordinates of the system by taking the momentum along the Mechanical flux-flux correlation function methdd within the
direction of the mode normal to the seam surface. On the basis€ffective one-dimensional model in both the nonadiabatic and
of the surface hopping approach, a variety of NA-TSTs have adiabatic regimes. The present semiclassical results are found
been developed in the study of nonadiabatic chemical reactions.{© be in good agreement with the quantum ones in the whole
Zahr, Preston, and Milléf established a phase space integral range of coupling strength. _ _
formulation in the diabatic representation where the locus of ~ Since the ZN formulas are applicable to both harmonic and
intersection of potential energy surfaces (PES) plays the role @hharmonic PESs with coordinate-dependent electronic cou-
of the seam surface. Heller and Brothave also utilized the ~ Pling, the present approach can directly treat general cases of
rate formula in the scope of the phase space integral. Lorquetanharmonlc potentials with the non-Condon effect taken into
and Leyh-Nihar637 developed the statistical Riedam- account. ) ) ,
sperget-Kasset-Marcus (RRKM)-like equation for nonadia- This paper is organized as follows. In section 2, we sum-
batic unimolecular reactions. Marks and ThomF§&hintro- marize the formulation of NA-TST. Section 3 derives a new

duced a weighted flux through the seam surface and obtainegformula which modifies the Marcus formula starting from this
the nonadiabatic transition-state formula in the phase space NA-TST. The Monte Carlo implementation for multidimensional
Topaler and Truhldf studied the nonadiabatic decay rate of SYSIEMS is shown in section 4. Section 5 presents numerical
the excited complex in the scope of the statistical model. Using applications to the multidimensional collective oscillator model

the minimum energy crossing point (MECP) as the hopping for both_symmetric z_;md asymmetric reactions. Section 6 is the
point, Cub! developed a theory which is very similar to the conclusion. Appendices A and B present the ZN formulas used

original adiabatic transition-state theory by Milf&rin most of in the' nonadiapatic tgnneling case and the explanation of the
these NA-TSTs, the nonadiabatic transition probability is given effective one-dimensional model.

by the LZ formula. It is well-known, however, that the LZ theory
does not work at energies near or lower than the crossing point,
that is, it cannot incorporate the classically forbidden nonadia-  The rigorous quantum mechanical ET rate constant is written
batic transitions. Besides, the LZ probability is not very accurate by the flux-side correlation functiéfas

for the case of strong diabatic coupling. Furthermore, the LZ

2. Generalized Nonadiabatic Transition-State Theory

theory requires information from diabatic PESs, which is not kZ = lim tr[eﬁﬂFI IA:e"q”ﬁﬁe’":”’F'] ()
available in general. e
In the present work, we utilize the generalized NA-TSfd Here Z; is the partition function of the donor is the

the ZN theory to formulate a new formula similar to the Marcus  Hamiltonian of the systenf is Heaviside functiont = i/A[H,

formula. The purpose is to propose a simple yet accurate formulafj is the flux operator through the dividing surface between
to be directly applicable to explain experimental data, for reactants and products, afd= 1/T as usual. Within the
example, the localized-to-delocalized ET in mixed-valence framework of the transition-state theory, eq 1 is castlinto
molecules’344 The formulation can also be used to define the

“sink” function**~47 along the fast vibrational modes in the L [

treatment of solvent-controlled ET reactions. The difference K= ZmodZa gﬁ

from the Marcus formula is the prefactor which is defined by Vi)

the thermally averaged ZN formula. The generalized NA-TST f dQ e " P(8,Q) IVSQ)I6(, — SQ)) (2)

is formulated based on Miller’'s reactive flaxlux correlation . ) )

function approach. The ZhtNakamura (ZN) theor§8-52 on for anN-dimensional system. Heréy = / dQ e/ is the

the other hand, is practically free from the drawbacks of the classical partition function of the donor afigloais the quantum
LZ theory mentioned above. It covers all of the energy range _mecha_nl_cal correction of the partition function, and its deflnlt_|on
in the two-state curve crossing problem and can be implemented!S €XPlicitly given in ref 1,Q represents the nuclear Cartesian
in practice using only the adiabatic PESs information. Numerical co0rdinates olN degrees of freedomyy(Q) is the potential
testd have also shown that it is very essential for accurate €"€'9¥ surface of the donor, agd= £ = Q) determines the
evaluation of the thermal rate constant to take into account the ¢0SSINg seam surface from_ the donor to the acceptor. The
multidimensional topography of the seam surface and treat theva”"?‘bleg IS mtroduped to dgfme the freg energy (see Fhe next
nonadiabatic electronic transition and nuclear tunneling effects section). The effecnve transition probablli‘fy(ﬁ,Q) a}t agven
properly. The presently proposed formula of ET rate is ap- temper_a_tureT is evaluated from the nonadiabatic transition
plicable to multidimensional systems and the Monte Carlo probability Pzn(E.Q) by

approach can be usefully utilized. The numerical tests for a o

multidimensional harmonic system in the Marcus normal region Pi(B.Q) =4 [, dE e MEVD P (EQ) )
demonstrate that the present formula can cover a wide temper-

ature range from deep tunneling to classical high temperature.whereE represents the total energy along the direction normal
In the weak coupling regime, it gives excellent agreement with to the seam surface at the nuclear coordin@ed/e implement
the Bixon—JortneP formula. In the strong electronic coupling  Pzn(E,Q) by the ZN formula®-52 which can cover the whole
regime, rigorous quantum mechanical evaluation of the ET rate energy range from the deep tunneling to high-energy regions
is nontrivial for multidimensional systems even in the limit of with high accuracy. The details of the ZN formulas are given
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in Appendix A. The basic physical idea behind eq 2 is the
surface hopping due to nonadiabatic trans#foft which has
been widely used in the study of nonadiabatic chemical
reactions.

3. Improvement of the Marcus Formula
In the original Marcus formula, the rate is described by using

the free energy. To find the connection between eq 2 and the

Marcus formula, we introduce the free energy proFigs) by

e MO = [dQ e @ |vyQ)| 6(¢ — SQ)

Equation 2 can then be recast into

(4)

K= Znodes 3 PlBED [ €E0(E — E9e 7O (5)
where the average transition probabilRy(3,£) is defined by
J dQ e vQ)| (& — SQ)P+(B.Q)

J dQ e M@ vgQ)l 6(¢ — SQ)

In the linear response limit, the free energg®) (i = 1, 2) of

IST(ﬂ v‘g) =

Zhao et al.

1
=5 0(0&)° (13)
whered&y = &o2 — &o1. In eq 10, the effects of nonadiabatic
transition and tunneling are properly taken into accounicby
and naturally the main task is to evaluate the average transition
probability Pr(3,£).

Let us consider the nonadiabatic reaction along the one-
dimensional coordinat& The free energy curves act as potential
curves, and eq 6 becomes

PiB.E) =P [, dE e "P,(E&) (14)
wherePzn(E,&o) is determined from the free energy profiles.
At high temperatures and a weak electronic coupling lifyt-
(E,&0) can be given by the Taylor expansion of the LZ or ZN
formula as

27H 55°

| AF|v/2E

whereAF is the slope difference of the two diabatic potentials
at the crossing point. Combining egs 15, 14, and 11, one can
easily find« = 1. Thus, eq 10 goes back to the original Marcus

Pn(EE) = (15)

the donor and acceptor can be expressed by parabolic functiongormula in the nonadiabatic (weak electronic coupling) limit.

of £ as

Fi) =~ [% In[ f dQ e ™V |vQ)I 6(5 ~ SQ))] =
S0E— &) (7)
and
Fy(8) = - % In[ [ dQ e "4 |vQ)| 8(5 — SQ))] =
S0HE— &)+ AG (®)

where&p; and &g, are the positions of the donor and acceptor
free energy minima, respectively, aniG represents the
exothermicity of the reaction which is determined by setting
= &nzin eq 8.

By the use of the free energy definition of eq 7, the partition

function Z, can be cast to
Z,= f dé e PV (9)
Combining egs 5, 7, and 9, we can obtain
k= KkMarcus (10)
with
how [ A 5
K= oxH 2 7B P+(8.50) (11)
AB
wherekwarcus is the Marcus formula given by
Hap? )
Kuaas = e o/ L0054 (1)

andHag is the electronic coupling between donor and acceptor.
The reorganization energyis defined by

When the coupling strength becomes strong enough, eq 10 reads

@

27

— B(A+AG)2/4

k=Le (16)

under the conditiorPz\(E,&p) = 1.0. Equation 16 is nothing
but the Marcus formula in the adiabatic limit.

4. Monte Carlo Implementation of Multidimensional Case

In the previous section, we have clarified the relation between
eq 5 and the Marcus theory eq 12. In this section, we mainly
focus on the numerical implementation for multidimensional
systems.

To use the Monte Carlo technique, it is natural to rewrite eq
5 as a product of two contributions, namely

/1
k= Zmod gﬂ R1R2

[ dQe™M O vEQ)IoE-SQ) FyE)

R = _
b fde fdQe™@usQ)iE-SQ) X
(18)

17)

with

and

[ dQe ™ vyQ)I 8(5 — SQ)IPHBQ)

J dQ e M vQ)l 6(5 — Q)
P:(8.50) (19)

Here, R; represents the ratio of the free energy on the seam
surface and the reactant partition functiyn andR, corresponds
to the average nonadiabatic transition probability at the seam
surfaceSQ) — & = 0.

The seam surface is defined as the crossing of the donor and
acceptor potentials, that is, defined by the equaficn &, =

R,



Thermally Activated Electron Transfer

V1 — V, = 0, which corresponds t§Q) = V1(Q) — V»(Q) and

o = 0. To evaluate th@ function of the seam surface in eqs
18 and 19, the molecular dynamics (MD) method may be
convenient in combination with the SHAKE algoritfhOn
the other hand, in the MC approach, one may replacejthe
function by a Gaussian function with sufficiently small width.
In this work, we employ an alternative approach, that is, the
simplified adaptive umbrella sampling appro2&H along the
reaction coordinat€ combined together with the histogram
technique, in which thé function in the sampling is defined
automatically if the histogram width is small enough.

It is noted thatFi(&p) is a property associated with the

potential at the transition state, whifg is associated with the
bottom of the donor well. The direct MC approach fails in most

cases of the evaluation of this ratio especially at low temper-
atures, because the system will seldom visit the transition state

due to the exponentially small probability density there. This
is a well-known problem associated with statistical sampling

of rare events. In such a case, the umbrella sampling techniqu

is commonly used, in which an artificial potential is added to

the system to bias the sampling toward the transition state to

overcome very poor statistics resulting from the conventional
MC method.

To achieve this, we divide a large enough interval of the
reaction coordinaté, which should cover all the contribution
to the partition functiorZ, into n equal slices, that is, bins. In
each bin, we add a biasing potentld(&;). Then, the biased
probability becomes

P(&) = f(&)Po(&) (20)
where the unbiased probability is given by
Po&) = [ dQe™@|vgQ) 6(5 — SQ) (21)
and the coefficienf(&;) is defined as
f(&) = exp(-pU(&)) (22)

The biasing potentialU(&) is chosen so that the biased
probability P(&;) is as flat as possible. In the MC simulation,
one may choose the weighted function as exf(Vi(Q) +
U(&))]. Thus,R; can be obtained by

_ PEE)
b dEPEE)

However, we do not knowJ(&;) a priori. An iterative learning

(23)

€
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TABLE 1: Frequencies and Reorganization Energies of the
12-Dimensional Harmonic Oscillator Model

wi (cm™1) Ai (cm™) wi (cm™) Ai (cm™)
462 3038 1007 269
511 1372 1169 638
584 775 1252 351
602 1039 1334 625
628 2125 1403 275
677 1196 1548 100

to sample the whole important range on the seam surface than

the conventional way.

5. Numerical Examples

5.1. Collective Harmonic Oscillator Model. Despite the fact
that the formula is applicable to general systems, for the purpose
of comparison with the perturbation theory, we consider a model
system often used in the study of ET in which the donor and
the acceptor are considered as a collection of shifted harmonic
oscillators. The Hamiltonians are thus expressed as

P2

H,= z - +V, (24)
I
and
P’
H, = z ? +V, (25)
I
with the potential energy surfaces
1 2~2
Vy 25 Z 05Q, (26)
I
and
1 2 2
\Z :E z 05(Q — Qq) (27)
I

where H; and H, correspond to the donor and acceptor,
respectively. The parametex and reorganization enerdy =
1/2(w? Q5) are listed in Table 1. In all the simulations, the
exothermicityAG of the reaction is set to zero. The reaction
coordinateé thus is defined as

1
E=V,—V,= Z (waj - 5wZQOf) (28)
|

procedure has to be employed to determine it, such as thewhile the seam surface correspondsttes £, = O.

weighted histogram analysis method (WHAR?) Recently,
Wang and Land&§ introduced an effective MC approach to

Figure 1 shows the free energy curves with respeét fior

the donor and the acceptor. The ground adiabatic state is denoted

evaluate the density of states for complex systems. Here, weby asterisks. In the simulation, 1C® points are taken in the

use a similar trick to modify the coefficief(&;) in each iteration
with the replacement d{&;) by f(&)/P(&;) and then proceed to
the next iteration with this new(&;) until the P(&) becomes
uniform (see more detail in refs 56 and 57). It should be
mentioned that the width in the WHAM is small enough for
each bin to represer(&).

Although the evaluation oR, can be achieved, in principle,

by the conventional MC technique, the same method as in the

calculation ofR; would be more efficient. We choose a small
range of& around&p and let the MC random walk visit this

range. At = &, we evaluate the nonadiabatic transition
probability eq 3 numerically. In this way, the MC walk is easier

MC circle. In the collection of harmonic oscillators, the free
energy profiles have the analytical forms as

Fi®) = 2 (E+ A7 (29)

and

Fi®) = 2 (6= A (30)

where the zero energy §t= 1 is taken as reference and the
total reorganization energyis given byt = 3 ;. Our numerical
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Figure 1. Free energy profiles corresponding to the potentials defined Figure 3. Effect of nonadiabatic tunneling. The solid line with circle

in section 5.1 (see also Table 1). The electronic coupling strength usediS R/ with use of the ZN formula, and the dashed line with diamond
is Hag = 0.0001 au. The solid line is for the donor, the dashed line for 1S R/ with use of the LZ formula. The parameters used are the same
the acceptor, and the asterisk is the ground-state free energy in theaS those in Figure 2.

adiabatic representation.
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Figure 4. ET rate vs electronic coupling strendtag. The temperature

is T =500 K. The solid line with circle shows the present result (eq

10) with the transition probability averaged over the seam surface; the

solid line with square shows the present result (eq 10) with the transition
yprobability taken at the minimum energy crossing point (MECP); the

dashed line shows the result of the Bixajortner theory? the dotted

. ) line shows the result of Marcus’s high-temperature theory (eq 12).
values are in excellent agreement with those from egs 29 and

30, which demonstrates the accuracy of the present MC on the ZN formulas is compared with that of the LZ formula.
technique (the analytical values are not shown in Figure 1 One can roughly say that the pure electronic transition dominates
because of indistinguishability). at T > 900 K and the joint effect of electronic transition and

The evaluation oR,, namely,Pr(3,50), is the most CPU time-  nuclear tunneling becomes crucial &t < 400 K. This is
consuming. To get a fast convergenceRpfind save computer  consistent with the result of Figure 2 where the Marcus theory
time, we calculat®(3,50) once every 10 MC visits of the seam  works well only atT > 900 K.
surface. The convergence is achieved within 10* evaluations Figure 4 shows the ET rate against the electronic coupling
of I5T(ﬂ,§o). strengthHag at T = 500 K. In the evaluation of the present

In Figure 2a, we show the ET rate against temperature in the formula, eq 10, two different values &(3,5) are considered:
weak electronic coupling regime (nonadiabatic limit). In the one is the direct evaluation of eq 19, namely, the transition
evaluation, the partition function correction is obtained via probability is averaged over the seam surface (generalized
normal-mode analysis in the reactive well and MECP. For a transition-state theory) and the other is to simply take a constant
comparison, the rate evaluated from the Bixdortner (BJ) value at the minimum energy crossing point (MECP) as in the
approach (eq 3.9 in ref 59) is also shown by the solid line. The conventional transition-state theory. In the latter case, the seam
present results are in very good agreement with those from thesurfaceSQ) is implicitly replaced byS(Qo) in the evaluation
BJ formula in the whole temperature range except in the deepof the transition probabilityPr(3,£), whereQq is the position
tunneling regime where the error at temperaflire 250 K is of the MECP. The difference between the two methods is only
only 29%. This figure also shows the results from the Marcus 10%, and the second method might be considered to be good
formula eq 12. As expected, the results from the Marcus formula enough. It should be noted, however, that this is simply because
become too small as the temperature decreases because dhe electronic coupling is constant and the potentials are simple
neglecting nuclear tunneling effect. The slope of the rate with in the present model. The MECP method can easily produce
respect to temperature in the case of Marcus formula is mainly very poor results especially when the electronic coupling
determined by the transition-state barrier height. depends on the coordinate Figure 4, we also show the rates

The fact that the electronic transition and nuclear tunneling from the BJ and Marcus theories. It is easily seen that, while
cannot be separated can be clearly seen from the ZN th&dy.  the results of our formula and the BJ approach are consistent
Significance of the nonadiabatic tunneling effect at low tem- in the nonadiabatic limitHlag < 0.0025 au), the latter naturally
peratures is clearly demonstrated in Figure 3, wieréased breaks down as the coupling increases. In the strong coupling

Figure 2. Arrhenius plot of the ET rate. The electronic coupling
strength isHag = 0.0001 au. The solid line represents the Bixon
Jortner perturbation theof§ithe full circle represents the present result
(eq 10); the dashed line represents Marcus’s high-temperature theor:
(eq 12).
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Figure 5. Arrhenius plot of the ET rate in the effective one-dimensional Figure 6. ET rate vs the electronic coupling strengtas at T = 500
model. The electronic Coup”ng Strength—]SB = 0.0001 au. The solid K. The solid line shows the present full-dimensional result; the dashed
line represents the present full-dimensional result; the dashed line line shows the present result in the effective one-dimensional model;
represents the one-dimensional model with= 749 cnt?; the dotted the filled circle shows the result of the quantum mechanicaHilxx
line represents the one-dimensional model with= 1027 cnr. correlation function; the dotted line shows the quantum mechanical
result in the adiabatic approximation. In the case of effective one-

regime, the MarcusHush formul&2! is often used to explain dimensional model, the effective frequency is takemwas 749 cn™.

experimental data. In the one-dimensional model, however, we ) ) . - .
have found that the Marcuddush formula based on the Lz  €ffective frequencyv; is compared with the multidimensional

formula gives poor results at low temperatures. On the other Simulation in a wide range of coupling strength. Again, this
hand, eq 10 reproduces the quantum rate excellently in wide one-dimensional model works nicely. We can conclude that the
ranges of coupling and temperature. effective model in which the effective frequency is defined by

5.2. Effective One-Dimensional Modellt would be very the method of Dogonadze can be a very good approximation at

useful and convenient for the interpretation of experimental data, €St for a collection of harmonic oscillators with the Condon
if we can match the collection of harmonic oscillators to a certain @PProximation in wide ranges of temperature and electronic
effective one-dimensional harmonic model. This matching couPling strength. _ _

technique is especially useful, if the frequencies and reorganiza- Despite the good agreement with the BJ formula in the case
tion energies of individual modes are not available. Dogorfidze ©Of weak electronic coupling, one might ask how accurate the
has proposed the effective one-dimensional frequency (see edPrésent approach is for the evaluation of the ET rate in the
B-6 in Appendix B) by fitting the prefactor in the multidimen- iIntermediate to strong el_ectromc cou_pllng regime. Since the
sional system under the LZ approximation to that in the effective Xact quantum mechanical calculations are not ftrivial for
one-dimensional system. For the purpose of comparison, heremultidimensional systems, we have qsed the .one-dlmensmnal
we consider two kinds of matching techniques. Since the quantum mechanical fluxflux correlation function approach
nonadiabatic transition probability is determined along the O test our semiclassical formula. Since the effective one-
direction normal to the seam surface, one may take the effectivedimensional mapping works well in the present model, we can
one-dimensional model along that direction with the effective €asily compute the corresponding ET rate accurately.
frequencyw; (see eq B-3 in Appendix B). The one-dimensional ~ In Figure 6, we show the ET rates from the quantum
potentials are given by egs B-1 and B-2. The second method, mechanical flux-flux correlation approach in comparison with
on the other hand, is to use the effective frequengysee eq the present ones. It shows that the present semiclassical results

B-6 in Appendix B) defined by Dogonadze. are in very good agreement with the quantum in the wide range
In the case of the above-mentioned effective one-dimension Of coupling strength tested. To investigate the adiabatic limit,
model, eq 17 can be rewritten as we also calculate the rate from the flaftux correlation function

with use only of the lower adiabatic potential energy curve,

_ 2 . JRop\ o that is, we ignore the contribution from the upper adiabatic

k= g 5" T) Jo dEexp-BEP(E)  (31) potential curve. The results are shown by the dotted line in
Figure 6. One finds the present semiclassical result indeed tends

In Figure 5, we show the ET rate as a function of temperature t0 the adiabatic limit whetig > 0.013.
in the weak coupling casélgg = 0.0001 au). The two effective In Figure 6, the rate increases with the increase of coupling
frequencies used am®; = 1027 cnt! and w, = 749 cnr?, strength toward the adiabatic limit. It should be noted that this
respectively. Comparing with the result from the multidimen- is different from the case of the solvent-controlled adiabatic
sional calculation, we can see that the rate is too large in the limit where the rate saturates at the strong coupling limit and
case ofws, while the rate withw, (Dogonadze frequency) isin  the saturation value is determined by the dielectric relaxation
excellent agreement with that of the multidimensional simulation time.
except in the deep tunneling regime. In the first method of using  Although the present formulation is general and should work
w1, the nonadiabatic probability is taken at the MECP which equally well in the asymmetric systems, it would be better to
gives the maximum value in the present model and the reactantbe able demonstrate that idea. In the following subsection, we
partition function predicted is too small compared with the investigate this case.
multidimensional one. Both effects give large contributions to  5.3. Electron Transfer in the Case of Asymmetric Reac-
the rate. This indicates that, despite that one may use the MECPtion. We use a similar potential system as in the symmetric
as the transition state, the one-dimensional model along thecase in the previous subsections except that the endothermicity
MECP cannot produce good results. is taken to be @,. With this parameter, the ET transfer still
In Figure 6, the ET rate by the second method of using the occurs in the Marcus normal region, but the potential crossing
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T T T has also been found that the formula in the effective one-
le+13f dimensional model nicely works for symmetric reactions, if we
use the effective frequency proposed by Dogonaélziss
le+12F validity is, however, somewhat doubtful in the asymmetric
- reactions in the strong coupling regime. Although the present
% le+11k work has discussed the statistical part of the rate constant by
3 using a model of several intramolecular modes, the fast solvent
le+10f —TEYTS) relaxation mode, if necessary, can be taken into account on the
"o Heeeoneh @) same footing as an intramolecular méd&he similar studies
1409 + v+ Perurbation(Bl) - in the Marcus inverted regime are left for future investigation.
Since the present formula in the effective one-dimensional model
le+08 L L L is quite simple in the symmetric case, we can expect that this
0 0.002 0.004 0.006 ) ) . .
Coupling strength is useful to directly explain experimental data of self-exchange
Figure 7. ET rate vs the electronic coupling strendiihs at T = 500 reactions in the case of a fast solvent relaxation.
K for the asymmetric reaction\G = —3wz,w2 = 749 cnt?). The solid Open questions left for future study are (i) the recrossing

line represents the present full-dimensional result with use of the ZN effect in the strong electronic coupling regime, (ii) the dynamical
formula; the dotted line represents the full-dimensional result obtained solvent effect, and (iii) application to more realistic systems.
from t_he Bix_on—Jortner formula. The filled dots represent the ef_fective As for the first problem, the Redfield the6Aand other quantum
one-dimensional result of the quantum mechanicakflilux correlation mechanical approacH&s®® show that the dynamical recrossing
fu_nctlon. The dashed line represents the effective one-dimensional resunbecomes im . .
with use of the ZN formula. portant and even the vibrational coherence appears
in the weak systembath damping limit. In this case, we can
point in the effective one-dimensional model is shifted to the EMPIOY the surface hopping technique and the idea of WdKffes
reactant side about 2/3 compared with the symmetric case. With!© Obtain a transmission coefficient. How to incorporate the
the use of the similar procedure in the previous subsections,Second effect, that is, the solvent dynamical effect for an
we have calculated the rate constants as a function of electronicdPitrary solvent, is an open question in the present approach.
coupling strengtiHas and the results are shown in Figure 7. In  However, in the limit of strong damping of solvent mode, the
the simulation, we have found that the reaction becomes motion of the solvent coordinate approximately satisfies the
delocalized in the full-dimensional system when the coupling Smoluchowski equation while intramolecular and fast solvent
strength is larger than 0.007 au. moglgs gletermmg the sink undert.he assumption of the thermal
Some interesting features can be observed in Figure 7. First,€quilibrium distributior?:#7.5%%In this sense, the present result
the rates obtained from the ZN (solid line) and BJ (dotted line) °f €d 10 may be directly used as the sink function for the fast
formulas give the same rates in the small coupling regime, as mod_es. As for the last problem, the present approach should be
it should be. However, when the coupling becomes large, the appllcablg to such systems even.tlrlglly, since the ZN formula
BJ formula breaks down as in the symmetric reaction. Thus, can predlct_the transition probabilities quite well for general
we may say that the perturbation theory does not necessarilycurve crossing problems, aI_thog_gh we have to overcome some
predict the larger rate than the real one in the strong electronic problgms such as the avallability qf accurate pote.ntlals and
coupling regime. A second interesting feature is that the rates cpuplmgs, and also of good experiments with which to be
obtained both from the ZN formula and from the flftux directly compared.
correlation function in the effective one-dimensional model  Acknowledgment. We would like to thank Dr. Tachiya of
agree well as in the symmetric reaction, which confirms the AIST (National Institute of Advanced Industrial Science and
accuracy of the ZN formula in the general asymmetric case. Technology) for simulating discussions and critical reading of
Finally, we notice that the rates obtained from the effective one- the manuscript. Y.Z. thanks Prof. Nelsen for his offer of the
dimensional model agree quite well with those from the full- resonance Raman spectroscopy parameters used in the present
dimensional calculation in the weak-to-intermediate coupling simulation. This work was supported by the National Science
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one-dimensional model does not work so well as in the funded by the National Basic Research Program of China (No.
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On the basis of the generalized nonadiabatic transmon-_stateAppendiX A. Thermally Averaged Transition Probability
theory of thermal rate constant, we have proposed a semiclas-

. Based on the Zhu-Nakamura Formulas
sical approach to evaluate the ET rate constant. Under the
assumption of fast solvent relaxation, a new simple yet accurate In this appendix, we explicitly present the ZN formulas used
formula has been derived in the Marcus’ normal regime with for the evaluation of thermally averaged transition probability
use of the ZN (Zha-Nakamura) theory of nonadiabatic transi- (eq 3)
tion. The formula is comprised of two factors: the Marcus’ high-
temperature formula and a prefactor to that formula. The latter P(8.Q) =p [ dEe"EVDp (EQ) (A1)
contains the thermally averaged ZN transition probability and
takes care of the nonadiabatic effects properly including the \where Vy(Q) is the diabatic potential an@n(E,Q) is the
nuclear tunneling. Thus, the formula is a kind of extension of nonadiabatic transition probability. Once the nuclear coordinate

the Marcus-Hush formula and can cover the whole range of Q is specified on the crossing seam surface, we take the direction
electronic coupling strength from the nonadiabatic to adiabatic normal to the seam acro§s by

limit. Numerical tests not only confirmed the accuracy but also
demonstrated the applicability to multidimensional systems. It n=vYQ)|vYQ)| (A-2)
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W= 1+05 fm dt cosf¥/3 — b*/a?® — gt/

& \Tl r / E{R) 32/3 0

g 2

g (0.612°2 V2 + b* + at)] (A-9)

SE}-----------

E, Eb _____________ | (3) E < E¢ In this energy region, the total transmission

I o probability is expressed as

t! o tr
% ¥ 1\ E{R) P (E) =
L —20
R K, B(oJm)e
R(Coordinate) [1 + (0.5va%(1 + Va?)BoJm)e 2] + B(oJm)e ?

Figure 8. Schematic two-state adiabatic potentials in the case of (A-10)

nonadiabatic tunneling.

) o where nuclear tunneling is incorporated via the Gamov factor
and cut the potential energy surfaces along this direction to g-25 B(X) = 27x2e 2/(xI'(x)), and o, is the phase due to the
obtain one-dimensional potential curves. Since the Marcus’ nonadiabatic transition (see refs 50, 51, and 52). The probability
normal case is considered in the present model, the potentialyt eq A-10 is always smaller than the penetration probability
curves correspond to the nonadiabatic tunneling case as showRough the lower adiabatic potential because of the nonadiabatic
in Figure 8. In this case, Zhu and Nakamura have provided the ¢o,pling effect. When the diabatic coupling is infinitely strong,
analytical expressions of nonadiabatic transition probability and 4t js a2 approaches to zero, eq A-10 naturally goes to the
the overall transmission probability from the left to the right  orginary tunneling probabilitP-n(E) = e 2/(1 + e ).
along the lower adiabatic potential curve. These expressions
are separately given for three energy regidas-(E,, Ep, > E Appendix B. Effective Mapping Frequency and

> E, E < Et) in terms of the fO”OWing two parameters One-Dimensional Potentials
, > 72 One way to define the one-dimensional mapping frequency
a=vd -1 5 5 (A-3) is to take the one-dimensional mode along the hopping direction,
(T, — T1O) [Ex(Ry) — E4(Ro)] that is, the direction normal to the seam surface at MECP. With
normal-mode analysis at MECP of the potentials given by eqgs
and 26 and 27, we can obtain two shifted one-dimensional potential

energy curves as

JE—1 E— [E(Ry) + Eo(Rp))2

b’ = 2 (A-4) 1 2.2 2
[Ex(Ry) — Ex(Ro)] Vi(Q) =35 w0 Qy" + 0 Qy + Bys (B-1)
where and
o2 = [EXT,) _[ E2((T1)O)][E1((T20))]2— Ey(T,))] (A5) V,(Q) = % 0*Q.2 — 0?Q, + Ere (B-2)
E, Ro - K R0
(1) E > Ep: The overall transmission probability is given by where
4cody w®= > wi4/1i/Z wl; (B-3)

Pn® = o2 W+ pA(L - p) (A-6)

1
wherep is the probability for one passage of the crossing and w? 25 Z wiz;{i (B-4)
I

takes the form

2 1
pzex;{—%a( 2 \/ 4 143) Z] A7)
b? + vb* — 0.72+ 0l62a ETS=%1/1+AG (B-5)

and y is the phase factor coming from the upper adiabatic
potential curvé® 52 If one averages the phase factor, then eq In eqs B-3 and B-5}; andZ are the reorganization energy for
A-6 becomes the conventional transmission probability with the the ith mode and the total reorganization energy, respectively.

LZ probability replaced by eq A-7. The second way is to take the effective frequency as
(2) Ep = E = E¢: In this case, the energy locates between
the top of the lower adiabatic potential and the bottom of the 2 _} 2 B-6
upper adiabatic potential. The transmission probability takes the o = Jl Z Wi Ai (B-6)
form '
W2 This is the method proposed by DogonaéZ€he corresponding
P, (E) = ——— (A-8) potential energy curves are
A W

_1 >0
whereW is given by Vi(Q = 2@ Q
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and
VAQ =30°Q- Q)P +AG  (BT)
with

Q=2 (8-8)

From the numerical test, we have found that the rate with use
of the effective frequency given by eq B-6 gives an excellent
agreement with the multi-mode simulation in the whole range
of electronic coupling strength under the model of harmonic

potentials and the Condon approximation.
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