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The generalized nonadiabatic transition-state theory (NA-TST) (Zhao, Y.; et al.J. Chem. Phys.2004, 121,
8854) is used to study electron transfer with use of the Zhu-Nakamura (ZN) formulas of nonadiabatic transition
in the case of fast dielectric relaxation. The rate constant is expressed as a product of the well-known Marcus
formula and a coefficient which represents the correction due to the strong electronic coupling. In the case
of general multidimensional systems, the Monte Carlo approach is utilized to evaluate the rate by taking into
account the multidimensionality of the crossing seam surface. Numerical demonstration is made by using a
model system of a collection of harmonic oscillators in the Marcus normal region. The results are naturally
coincident with the perturbation theory in the weak electronic coupling limit; while in the intermediate to
strong electronic coupling regime where the perturbation theory breaks down the present results are in good
agreement with those from the quantum mechanical flux-flux correlation function within the model of effective
one-dimensional mode.

1. Introduction

The present paper is an extension of our earlier work1 for
the discussion of nonadiabatic chemical reactions to electron
transfer (ET) in the intermediate to strong electronic coupling
in the limit of fast solvent relaxation. In the previous paper, we
incorporated the Zhu-Nakamura (ZN) theory for the two-state
curve crossing problem into the nonadiabatic transition-state
theory (NA-TST). The approach has been applied to the one-
and two-dimensional systems with exponential and Morse
diabatic potential energy surfaces (PES) and exponential diabatic
coupling. The numerical results demonstrated its potential
applicability.

The ET in the strong electronic coupling regime is frequently
related to the solvent dynamical relaxation processes. In this
case, the electronic coupling itself may not be a sufficient factor
to justify the usage of nonadiabatic or adiabatic theory. If the
solvent relaxation is very slow compared with the ET process,
then multiple crossings of the transition region become possible
even in the weak coupling region. As a result, higher order
perturbation with respect to the electronic coupling is required.
Ultimately, the reactions can become independent of the
electronic coupling, that is, they become solvent-controlled
adiabatic reactions while still nonadiabatic in the absence of
solvent dynamics. On the basis of the original works indepen-
dently done by Zusman2 and Burshtein and co-workers,3 a large
number of theoretical approaches have been proposed to treat
the competition between solvent relaxation and electronic
transitions in the case of strong coupling (see, for instance, ref
4 and references therein). Yet, the true adiabatic process is

different from the nonadiabatic one with slow solvent polariza-
tion modes. Several works have clarified the differences.5-7 In
the limit of fast dielectric relaxation, on the other hand, ET rate
is independent of the relaxation properties of the solvent and
the traditional thermal equilibrium formulation is applicable.
In the present paper, we will study the ET in this limit, while
leaving the discussions on the solvent dynamical effects for
future study.

From the very beginning of the development of the ET
theory,8-11 it has been recognized that the perturbation theory
is applicable for a weak coupling regime (nonadiabatic limit)
and the adiabatic transition-state theory can be used in the strong
coupling limit to describe reactions as taking place on the
adiabatic PES. Since then, numerous attempts have been
undertaken to try to develop a unified theory to incorporate these
two limits in a consistent way.12-20

The classical and semiclassical treatments of ET thermal rate
have a long history, and the well-known Marcus-Hush
semiclassical formula9,21has been continuously used in the field.
In this formula, the thermally averaged Landau-Zener (LZ)
transmission probability22-24 is used to connect the nonadiabatic
and adiabatic limits. The nuclear tunneling effect is additionally
incorporated independently from the electronic transition, which
cannot be a proper procedure since the electronic transition and
nuclear tunneling cannot be separated.

To treat multidimensional ET problems, the idea of effective
frequency is introduced to match the multi-mode LZ transmis-
sion coefficient.25,26The validity of the one-dimensional model
based on the LZ formula, however, is criticized (see, e.g., ref
4) when it is applied to a system of reaction coordinates coupled
to a bath. Rips and Pollak27,28 have introduced an optimized
reaction coordinate to solve this problem. They use a canonical
transformation to optimize the reaction path and maximize its
mean free path in the vicinity of the crossing point. When the
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mean free path is longer than the characteristic LZ length, the
LZ formula is applicable.

The electron transfer in a multidimensional space can be
directly treated by using the surface hopping technique29-33

without explicitly introducing a one-dimensional reaction
coordinate in configuration space. The transition probability is
evaluated on the seam surface in the instantaneous normal-mode
coordinates of the system by taking the momentum along the
direction of the mode normal to the seam surface. On the basis
of the surface hopping approach, a variety of NA-TSTs have
been developed in the study of nonadiabatic chemical reactions.
Zahr, Preston, and Miller34 established a phase space integral
formulation in the diabatic representation where the locus of
intersection of potential energy surfaces (PES) plays the role
of the seam surface. Heller and Brown35 have also utilized the
rate formula in the scope of the phase space integral. Lorquet
and Leyh-Nihant36,37 developed the statistical Rice-Ram-
sperger-Kassel-Marcus (RRKM)-like equation for nonadia-
batic unimolecular reactions. Marks and Thompson38,39 intro-
duced a weighted flux through the seam surface and obtained
the nonadiabatic transition-state formula in the phase space.
Topaler and Truhlar40 studied the nonadiabatic decay rate of
the excited complex in the scope of the statistical model. Using
the minimum energy crossing point (MECP) as the hopping
point, Cui41 developed a theory which is very similar to the
original adiabatic transition-state theory by Miller.42 In most of
these NA-TSTs, the nonadiabatic transition probability is given
by the LZ formula. It is well-known, however, that the LZ theory
does not work at energies near or lower than the crossing point,
that is, it cannot incorporate the classically forbidden nonadia-
batic transitions. Besides, the LZ probability is not very accurate
for the case of strong diabatic coupling. Furthermore, the LZ
theory requires information from diabatic PESs, which is not
available in general.

In the present work, we utilize the generalized NA-TST1 and
the ZN theory to formulate a new formula similar to the Marcus
formula. The purpose is to propose a simple yet accurate formula
to be directly applicable to explain experimental data, for
example, the localized-to-delocalized ET in mixed-valence
molecules.43,44 The formulation can also be used to define the
“sink” function45-47 along the fast vibrational modes in the
treatment of solvent-controlled ET reactions. The difference
from the Marcus formula is the prefactor which is defined by
the thermally averaged ZN formula. The generalized NA-TST
is formulated based on Miller’s reactive flux-flux correlation
function approach. The Zhu-Nakamura (ZN) theory,48-52 on
the other hand, is practically free from the drawbacks of the
LZ theory mentioned above. It covers all of the energy range
in the two-state curve crossing problem and can be implemented
in practice using only the adiabatic PESs information. Numerical
tests1 have also shown that it is very essential for accurate
evaluation of the thermal rate constant to take into account the
multidimensional topography of the seam surface and treat the
nonadiabatic electronic transition and nuclear tunneling effects
properly. The presently proposed formula of ET rate is ap-
plicable to multidimensional systems and the Monte Carlo
approach can be usefully utilized. The numerical tests for a
multidimensional harmonic system in the Marcus normal region
demonstrate that the present formula can cover a wide temper-
ature range from deep tunneling to classical high temperature.
In the weak coupling regime, it gives excellent agreement with
the Bixon-Jortner53 formula. In the strong electronic coupling
regime, rigorous quantum mechanical evaluation of the ET rate
is nontrivial for multidimensional systems even in the limit of

fast relaxation. The numerical tests of the present approach have
found that the matching technique to fit multi-mode by one
effective mode25 can give a very good result in the wide range
of electronic coupling strength and temperature except in the
deep tunneling region for symmetric ET reactions. Thus, instead
of carrying out computations of a multidimensional system
directly, we can rigorously evaluate the ET rate by the quantum
mechanical flux-flux correlation function method54 within the
effective one-dimensional model in both the nonadiabatic and
adiabatic regimes. The present semiclassical results are found
to be in good agreement with the quantum ones in the whole
range of coupling strength.

Since the ZN formulas are applicable to both harmonic and
anharmonic PESs with coordinate-dependent electronic cou-
pling, the present approach can directly treat general cases of
anharmonic potentials with the non-Condon effect taken into
account.

This paper is organized as follows. In section 2, we sum-
marize the formulation of NA-TST. Section 3 derives a new
formula which modifies the Marcus formula starting from this
NA-TST. The Monte Carlo implementation for multidimensional
systems is shown in section 4. Section 5 presents numerical
applications to the multidimensional collective oscillator model
for both symmetric and asymmetric reactions. Section 6 is the
conclusion. Appendices A and B present the ZN formulas used
in the nonadiabatic tunneling case and the explanation of the
effective one-dimensional model.

2. Generalized Nonadiabatic Transition-State Theory

The rigorous quantum mechanical ET rate constant is written
by the flux-side correlation function54 as

Here Zr is the partition function of the donor,Ĥ is the
Hamiltonian of the system,ĥ is Heaviside function,F̂ ) i/p[Ĥ,
ĥ] is the flux operator through the dividing surface between
reactants and products, andâ ) 1/κT as usual. Within the
framework of the transition-state theory, eq 1 is cast into1

for an N-dimensional system. Here,Zcl ) ∫ dQ e-âV1(Q) is the
classical partition function of the donor andZmod is the quantum
mechanical correction of the partition function, and its definition
is explicitly given in ref 1,Q represents the nuclear Cartesian
coordinates ofN degrees of freedom,V1(Q) is the potential
energy surface of the donor, andê ) ê0 ) S(Q) determines the
crossing seam surface from the donor to the acceptor. The
variableê is introduced to define the free energy (see the next
section). The effective transition probabilityPT(â,Q) at a given
temperatureT is evaluated from the nonadiabatic transition
probability PZN(E,Q) by

whereE represents the total energy along the direction normal
to the seam surface at the nuclear coordinatesQ. We implement
PZN(E,Q) by the ZN formulas50-52 which can cover the whole
energy range from the deep tunneling to high-energy regions
with high accuracy. The details of the ZN formulas are given

kZr ) lim
tf∞

tr[e-âĤ F̂eiĤt/ĥĥe-iĤt/ĥ] (1)

k ) ZmodZcl
-1 x 1

2πâ

∫ dQ e-âV1(Q) PT(â,Q) |3S(Q)|δ(ê0 - S(Q)) (2)

PT(â,Q) ) â ∫0

∞
dE e-â(E-V1(Q)) PZN(E,Q) (3)

Thermally Activated Electron Transfer J. Phys. Chem. A, Vol. 110, No. 26, 20068205



in Appendix A. The basic physical idea behind eq 2 is the
surface hopping due to nonadiabatic transition29-31 which has
been widely used in the study of nonadiabatic chemical
reactions.

3. Improvement of the Marcus Formula

In the original Marcus formula, the rate is described by using
the free energy. To find the connection between eq 2 and the
Marcus formula, we introduce the free energy profileF1(ê) by

Equation 2 can then be recast into

where the average transition probabilityPhT(â,ê) is defined by

In the linear response limit, the free energiesFi(ê) (i ) 1, 2) of
the donor and acceptor can be expressed by parabolic functions
of ê as

and

whereê01 andê02 are the positions of the donor and acceptor
free energy minima, respectively, and∆G represents the
exothermicity of the reaction which is determined by settingê
) ê02 in eq 8.

By the use of the free energy definition of eq 7, the partition
function Zcl can be cast to

Combining eqs 5, 7, and 9, we can obtain

with

wherekMarcus is the Marcus formula given by

andHAB is the electronic coupling between donor and acceptor.
The reorganization energyλ is defined by

whereδê0 ) ê02 - ê01. In eq 10, the effects of nonadiabatic
transition and tunneling are properly taken into account byκ

and naturally the main task is to evaluate the average transition
probability PhT(â,ê).

Let us consider the nonadiabatic reaction along the one-
dimensional coordinateê. The free energy curves act as potential
curves, and eq 6 becomes

wherePZN(E,ê0) is determined from the free energy profiles.
At high temperatures and a weak electronic coupling limit,PZN-
(E,ê0) can be given by the Taylor expansion of the LZ or ZN
formula as

where∆F is the slope difference of the two diabatic potentials
at the crossing point. Combining eqs 15, 14, and 11, one can
easily findκ ) 1. Thus, eq 10 goes back to the original Marcus
formula in the nonadiabatic (weak electronic coupling) limit.
When the coupling strength becomes strong enough, eq 10 reads

under the conditionPZN(E,ê0) ) 1.0. Equation 16 is nothing
but the Marcus formula in the adiabatic limit.

4. Monte Carlo Implementation of Multidimensional Case

In the previous section, we have clarified the relation between
eq 5 and the Marcus theory eq 12. In this section, we mainly
focus on the numerical implementation for multidimensional
systems.

To use the Monte Carlo technique, it is natural to rewrite eq
5 as a product of two contributions, namely

with

and

Here, R1 represents the ratio of the free energy on the seam
surface and the reactant partition functionZcl, andR2 corresponds
to the average nonadiabatic transition probability at the seam
surfaceS(Q) - ê0 ) 0.

The seam surface is defined as the crossing of the donor and
acceptor potentials, that is, defined by the equationê ) ê0 )

e-âF1(ê) ) ∫ dQ e-âV1(Q) |3S(Q)| δ(ê - S(Q)) (4)

k ) ZmodZcl
-1 x 1

2πâ
PhT(â,ê0) ∫ dêδ(ê - ê0)e

-âF1(ê) (5)

PhT(â,ê) )
∫ dQ e-âV1(Q) |3S(Q)| δ(ê - S(Q))PT(â,Q)

∫ dQ e-âV1(Q) |3S(Q)| δ(ê - S(Q))
(6)

F1(ê) ) - 1
â

ln[∫ dQ e-âV1(Q) |3S(Q)| δ(ê - S(Q))] )

1
2

ω2(ê - ê01)
2 (7)

F2(ê) ) - 1
â

ln[∫ dQ e-âV2(Q) |3S(Q)| δ(ê - S(Q))] )

1
2

ω2(ê - ê02)
2 + ∆G (8)

Zcl ) ∫ dê e-âV1(ê) (9)

k ) κkMarcus (10)

κ ) pω
2πHAB

2 x λ
πâ

PhT(â,ê0) (11)

kMarcus)
HAB

2

p xπâ
λ

e-â(λ+∆G)2/4λ (12)

λ ) 1
2

ω2(δê0)
2 (13)

PhT(â,ê0) ) â ∫0

∞
dE e-âEPZN(E,ê0) (14)

PZN(E,ê0) )
2πHAB

2

p|∆F|x2E
(15)

k ) ω
2π

e-â(λ+∆G)2/4λ (16)

k ) Zmodx 1
2πâ

R1R2 (17)

R1 )
∫ dQ e-âV1(Q) |3S(Q)| δ(ê0 - S(Q))

∫ dê ∫ dQ e-âV1(Q) |3S(Q)| δ(ê - S(Q))
≡ F1(ê0)

Zcl

(18)

R2 )
∫ dQ e-âV1(Q) |3S(Q)| δ(ê0 - S(Q))PT(â,Q)

∫ dQ e-âV1(Q) |3S(Q)| δ(ê0 - S(Q))
≡

PhT(â,ê0) (19)
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V1 - V2 ) 0, which corresponds toS(Q) ) V1(Q) - V2(Q) and
ê0 ) 0. To evaluate theδ function of the seam surface in eqs
18 and 19, the molecular dynamics (MD) method may be
convenient in combination with the SHAKE algorithm.55 On
the other hand, in the MC approach, one may replace theδ
function by a Gaussian function with sufficiently small width.
In this work, we employ an alternative approach, that is, the
simplified adaptive umbrella sampling approach56,57 along the
reaction coordinateê combined together with the histogram
technique, in which theδ function in the sampling is defined
automatically if the histogram width is small enough.

It is noted thatF1(ê0) is a property associated with the
potential at the transition state, whileZcl is associated with the
bottom of the donor well. The direct MC approach fails in most
cases of the evaluation of this ratio especially at low temper-
atures, because the system will seldom visit the transition state
due to the exponentially small probability density there. This
is a well-known problem associated with statistical sampling
of rare events. In such a case, the umbrella sampling technique
is commonly used, in which an artificial potential is added to
the system to bias the sampling toward the transition state to
overcome very poor statistics resulting from the conventional
MC method.

To achieve this, we divide a large enough interval of the
reaction coordinateê, which should cover all the contribution
to the partition functionZcl, into n equal slices, that is, bins. In
each bin, we add a biasing potentialU(êi). Then, the biased
probability becomes

where the unbiased probability is given by

and the coefficientf(êi) is defined as

The biasing potentialU(êi) is chosen so that the biased
probability P(êi) is as flat as possible. In the MC simulation,
one may choose the weighted function as exp[-â(V1(Q) +
U(êi))]. Thus,R1 can be obtained by

However, we do not knowU(êi) a priori. An iterative learning
procedure has to be employed to determine it, such as the
weighted histogram analysis method (WHAM).55 Recently,
Wang and Landau58 introduced an effective MC approach to
evaluate the density of states for complex systems. Here, we
use a similar trick to modify the coefficientf(êi) in each iteration
with the replacement off(êi) by f(êi)/P(êi) and then proceed to
the next iteration with this newf(êi) until the P(êi) becomes
uniform (see more detail in refs 56 and 57). It should be
mentioned that the width in the WHAM is small enough for
each bin to representδ(ê).

Although the evaluation ofR2 can be achieved, in principle,
by the conventional MC technique, the same method as in the
calculation ofR1 would be more efficient. We choose a small
range ofê aroundê0 and let the MC random walk visit this
range. At ê ) ê0, we evaluate the nonadiabatic transition
probability eq 3 numerically. In this way, the MC walk is easier

to sample the whole important range on the seam surface than
the conventional way.

5. Numerical Examples

5.1. Collective Harmonic Oscillator Model.Despite the fact
that the formula is applicable to general systems, for the purpose
of comparison with the perturbation theory, we consider a model
system often used in the study of ET in which the donor and
the acceptor are considered as a collection of shifted harmonic
oscillators. The Hamiltonians are thus expressed as

and

with the potential energy surfaces

and

where H1 and H2 correspond to the donor and acceptor,
respectively. The parameterωi and reorganization energyλi )
1/2(ωi

2 Q0j
2 ) are listed in Table 1. In all the simulations, the

exothermicity∆G of the reaction is set to zero. The reaction
coordinateê thus is defined as

while the seam surface corresponds toê ) ê0 ) 0.
Figure 1 shows the free energy curves with respect toê for

the donor and the acceptor. The ground adiabatic state is denoted
by asterisks. In the simulation, 1× 108 points are taken in the
MC circle. In the collection of harmonic oscillators, the free
energy profiles have the analytical forms as

and

where the zero energy atê ) λ is taken as reference and the
total reorganization energyλ is given byλ ) ∑iλi. Our numerical

P(êi) ) f(êi)P0(êi) (20)

P0(êi) ) ∫ dQ e-âV1(Q) |3S(Q)| δ(êi - S(Q)) (21)

f(êi) ) exp(-âU(êi)) (22)

R1 )
P(ê0)(f(ê0))

-1

∫ dê P(ê)(f(ê))-1
(23)

TABLE 1: Frequencies and Reorganization Energies of the
12-Dimensional Harmonic Oscillator Model

ωi (cm-1) λi (cm-1) ωi (cm-1) λi (cm-1)

462 3038 1007 269
511 1372 1169 638
584 775 1252 351
602 1039 1334 625
628 2125 1403 275
677 1196 1548 100

H1 ) ∑
i

Pi
2

2
+ V1 (24)

H2 ) ∑
i

Pi
2

2
+ V2 (25)

V1 )
1

2
∑

i

ω2
iQi

2 (26)

V2 )
1

2
∑

i

ω2
i(Qi - Q0i)

2 (27)

ê ) V1 - V2 ) ∑
j

(ωj
2Qj -

1

2
ω2Q0j

2) (28)

F1(ê) ) 1
4λ

(ê + λ)2 (29)

F2(ê) ) 1
4λ

(ê - λ)2 (30)
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values are in excellent agreement with those from eqs 29 and
30, which demonstrates the accuracy of the present MC
technique (the analytical values are not shown in Figure 1
because of indistinguishability).

The evaluation ofR2, namely,PhT(â,ê0), is the most CPU time-
consuming. To get a fast convergence ofR2 and save computer
time, we calculatePhT(â,ê0) once every 10 MC visits of the seam
surface. The convergence is achieved within 1× 104 evaluations
of PhT(â,ê0).

In Figure 2a, we show the ET rate against temperature in the
weak electronic coupling regime (nonadiabatic limit). In the
evaluation, the partition function correction is obtained via
normal-mode analysis in the reactive well and MECP. For a
comparison, the rate evaluated from the Bixon-Jortner (BJ)
approach (eq 3.9 in ref 59) is also shown by the solid line. The
present results are in very good agreement with those from the
BJ formula in the whole temperature range except in the deep
tunneling regime where the error at temperatureT ) 250 K is
only 29%. This figure also shows the results from the Marcus
formula eq 12. As expected, the results from the Marcus formula
become too small as the temperature decreases because of
neglecting nuclear tunneling effect. The slope of the rate with
respect to temperature in the case of Marcus formula is mainly
determined by the transition-state barrier height.

The fact that the electronic transition and nuclear tunneling
cannot be separated can be clearly seen from the ZN theory.48-52

Significance of the nonadiabatic tunneling effect at low tem-
peratures is clearly demonstrated in Figure 3, whereR2 based

on the ZN formulas is compared with that of the LZ formula.
One can roughly say that the pure electronic transition dominates
at T > 900 K and the joint effect of electronic transition and
nuclear tunneling becomes crucial atT < 400 K. This is
consistent with the result of Figure 2 where the Marcus theory
works well only atT > 900 K.

Figure 4 shows the ET rate against the electronic coupling
strengthHAB at T ) 500 K. In the evaluation of the present
formula, eq 10, two different values ofPhT(â,ê) are considered:
one is the direct evaluation of eq 19, namely, the transition
probability is averaged over the seam surface (generalized
transition-state theory) and the other is to simply take a constant
value at the minimum energy crossing point (MECP) as in the
conventional transition-state theory. In the latter case, the seam
surfaceS(Q) is implicitly replaced byS(Q0) in the evaluation
of the transition probabilityPhT(â,ê), whereQ0 is the position
of the MECP. The difference between the two methods is only
10%, and the second method might be considered to be good
enough. It should be noted, however, that this is simply because
the electronic coupling is constant and the potentials are simple
in the present model. The MECP method can easily produce
very poor results especially when the electronic coupling
depends on the coordinates.1 In Figure 4, we also show the rates
from the BJ and Marcus theories. It is easily seen that, while
the results of our formula and the BJ approach are consistent
in the nonadiabatic limit (HAB < 0.0025 au), the latter naturally
breaks down as the coupling increases. In the strong coupling

Figure 1. Free energy profiles corresponding to the potentials defined
in section 5.1 (see also Table 1). The electronic coupling strength used
is HAB ) 0.0001 au. The solid line is for the donor, the dashed line for
the acceptor, and the asterisk is the ground-state free energy in the
adiabatic representation.

Figure 2. Arrhenius plot of the ET rate. The electronic coupling
strength isHAB ) 0.0001 au. The solid line represents the Bixon-
Jortner perturbation theory;59 the full circle represents the present result
(eq 10); the dashed line represents Marcus’s high-temperature theory
(eq 12).

Figure 3. Effect of nonadiabatic tunneling. The solid line with circle
is R2/â with use of the ZN formula, and the dashed line with diamond
is R2/â with use of the LZ formula. The parameters used are the same
as those in Figure 2.

Figure 4. ET rate vs electronic coupling strengthHAB. The temperature
is T ) 500 K. The solid line with circle shows the present result (eq
10) with the transition probability averaged over the seam surface; the
solid line with square shows the present result (eq 10) with the transition
probability taken at the minimum energy crossing point (MECP); the
dashed line shows the result of the Bixon-Jortner theory;59 the dotted
line shows the result of Marcus’s high-temperature theory (eq 12).
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regime, the Marcus-Hush formula9,21 is often used to explain
experimental data. In the one-dimensional model, however, we
have found that the Marcus-Hush formula based on the LZ
formula gives poor results at low temperatures. On the other
hand, eq 10 reproduces the quantum rate excellently in wide
ranges of coupling and temperature.

5.2. Effective One-Dimensional Model.It would be very
useful and convenient for the interpretation of experimental data,
if we can match the collection of harmonic oscillators to a certain
effective one-dimensional harmonic model. This matching
technique is especially useful, if the frequencies and reorganiza-
tion energies of individual modes are not available. Dogonadze25

has proposed the effective one-dimensional frequency (see eq
B-6 in Appendix B) by fitting the prefactor in the multidimen-
sional system under the LZ approximation to that in the effective
one-dimensional system. For the purpose of comparison, here
we consider two kinds of matching techniques. Since the
nonadiabatic transition probability is determined along the
direction normal to the seam surface, one may take the effective
one-dimensional model along that direction with the effective
frequencyω1 (see eq B-3 in Appendix B). The one-dimensional
potentials are given by eqs B-1 and B-2. The second method,
on the other hand, is to use the effective frequencyω2 (see eq
B-6 in Appendix B) defined by Dogonadze.

In the case of the above-mentioned effective one-dimension
model, eq 17 can be rewritten as

In Figure 5, we show the ET rate as a function of temperature
in the weak coupling case (HAB ) 0.0001 au). The two effective
frequencies used areω1 ) 1027 cm-1 and ω2 ) 749 cm-1,
respectively. Comparing with the result from the multidimen-
sional calculation, we can see that the rate is too large in the
case ofω1, while the rate withω2 (Dogonadze frequency) is in
excellent agreement with that of the multidimensional simulation
except in the deep tunneling regime. In the first method of using
ω1, the nonadiabatic probability is taken at the MECP which
gives the maximum value in the present model and the reactant
partition function predicted is too small compared with the
multidimensional one. Both effects give large contributions to
the rate. This indicates that, despite that one may use the MECP
as the transition state, the one-dimensional model along the
MECP cannot produce good results.

In Figure 6, the ET rate by the second method of using the

effective frequencyω2 is compared with the multidimensional
simulation in a wide range of coupling strength. Again, this
one-dimensional model works nicely. We can conclude that the
effective model in which the effective frequency is defined by
the method of Dogonadze can be a very good approximation at
least for a collection of harmonic oscillators with the Condon
approximation in wide ranges of temperature and electronic
coupling strength.

Despite the good agreement with the BJ formula in the case
of weak electronic coupling, one might ask how accurate the
present approach is for the evaluation of the ET rate in the
intermediate to strong electronic coupling regime. Since the
exact quantum mechanical calculations are not trivial for
multidimensional systems, we have used the one-dimensional
quantum mechanical flux-flux correlation function approach
to test our semiclassical formula. Since the effective one-
dimensional mapping works well in the present model, we can
easily compute the corresponding ET rate accurately.54,60

In Figure 6, we show the ET rates from the quantum
mechanical flux-flux correlation approach in comparison with
the present ones. It shows that the present semiclassical results
are in very good agreement with the quantum in the wide range
of coupling strength tested. To investigate the adiabatic limit,
we also calculate the rate from the flux-flux correlation function
with use only of the lower adiabatic potential energy curve,
that is, we ignore the contribution from the upper adiabatic
potential curve. The results are shown by the dotted line in
Figure 6. One finds the present semiclassical result indeed tends
to the adiabatic limit whenHAB > 0.013.

In Figure 6, the rate increases with the increase of coupling
strength toward the adiabatic limit. It should be noted that this
is different from the case of the solvent-controlled adiabatic
limit where the rate saturates at the strong coupling limit and
the saturation value is determined by the dielectric relaxation
time.

Although the present formulation is general and should work
equally well in the asymmetric systems, it would be better to
be able demonstrate that idea. In the following subsection, we
investigate this case.

5.3. Electron Transfer in the Case of Asymmetric Reac-
tion. We use a similar potential system as in the symmetric
case in the previous subsections except that the endothermicity
is taken to be 3ω2. With this parameter, the ET transfer still
occurs in the Marcus normal region, but the potential crossing

Figure 5. Arrhenius plot of the ET rate in the effective one-dimensional
model. The electronic coupling strength isHAB ) 0.0001 au. The solid
line represents the present full-dimensional result; the dashed line
represents the one-dimensional model withω2 ) 749 cm-1; the dotted
line represents the one-dimensional model withω1 ) 1027 cm-1.

k ) 2
hâ

sinh(pωâ
2 ) ∫0

∞
dE exp(-âE)PZN(E) (31)

Figure 6. ET rate vs the electronic coupling strengthHAB at T ) 500
K. The solid line shows the present full-dimensional result; the dashed
line shows the present result in the effective one-dimensional model;
the filled circle shows the result of the quantum mechanical flux-flux
correlation function; the dotted line shows the quantum mechanical
result in the adiabatic approximation. In the case of effective one-
dimensional model, the effective frequency is taken asω2 ) 749 cm-1.
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point in the effective one-dimensional model is shifted to the
reactant side about 2/3 compared with the symmetric case. With
the use of the similar procedure in the previous subsections,
we have calculated the rate constants as a function of electronic
coupling strengthHAB and the results are shown in Figure 7. In
the simulation, we have found that the reaction becomes
delocalized in the full-dimensional system when the coupling
strength is larger than 0.007 au.

Some interesting features can be observed in Figure 7. First,
the rates obtained from the ZN (solid line) and BJ (dotted line)
formulas give the same rates in the small coupling regime, as
it should be. However, when the coupling becomes large, the
BJ formula breaks down as in the symmetric reaction. Thus,
we may say that the perturbation theory does not necessarily
predict the larger rate than the real one in the strong electronic
coupling regime. A second interesting feature is that the rates
obtained both from the ZN formula and from the flux-flux
correlation function in the effective one-dimensional model
agree well as in the symmetric reaction, which confirms the
accuracy of the ZN formula in the general asymmetric case.
Finally, we notice that the rates obtained from the effective one-
dimensional model agree quite well with those from the full-
dimensional calculation in the weak-to-intermediate coupling
regime. In the strong electronic coupling regime, however, the
one-dimensional model does not work so well as in the
symmetric case.

6. Concluding Remarks

On the basis of the generalized nonadiabatic transition-state
theory of thermal rate constant, we have proposed a semiclas-
sical approach to evaluate the ET rate constant. Under the
assumption of fast solvent relaxation, a new simple yet accurate
formula has been derived in the Marcus’ normal regime with
use of the ZN (Zhu-Nakamura) theory of nonadiabatic transi-
tion. The formula is comprised of two factors: the Marcus’ high-
temperature formula and a prefactor to that formula. The latter
contains the thermally averaged ZN transition probability and
takes care of the nonadiabatic effects properly including the
nuclear tunneling. Thus, the formula is a kind of extension of
the Marcus-Hush formula and can cover the whole range of
electronic coupling strength from the nonadiabatic to adiabatic
limit. Numerical tests not only confirmed the accuracy but also
demonstrated the applicability to multidimensional systems. It

has also been found that the formula in the effective one-
dimensional model nicely works for symmetric reactions, if we
use the effective frequency proposed by Dogonadze.25 Its
validity is, however, somewhat doubtful in the asymmetric
reactions in the strong coupling regime. Although the present
work has discussed the statistical part of the rate constant by
using a model of several intramolecular modes, the fast solvent
relaxation mode, if necessary, can be taken into account on the
same footing as an intramolecular mode.61 The similar studies
in the Marcus inverted regime are left for future investigation.
Since the present formula in the effective one-dimensional model
is quite simple in the symmetric case, we can expect that this
is useful to directly explain experimental data of self-exchange
reactions in the case of a fast solvent relaxation.

Open questions left for future study are (i) the recrossing
effect in the strong electronic coupling regime, (ii) the dynamical
solvent effect, and (iii) application to more realistic systems.
As for the first problem, the Redfield theory62 and other quantum
mechanical approaches63-65 show that the dynamical recrossing
becomes important and even the vibrational coherence appears
in the weak system-bath damping limit. In this case, we can
employ the surface hopping technique and the idea of Wolynes66,67

to obtain a transmission coefficient. How to incorporate the
second effect, that is, the solvent dynamical effect for an
arbitrary solvent, is an open question in the present approach.
However, in the limit of strong damping of solvent mode, the
motion of the solvent coordinate approximately satisfies the
Smoluchowski equation while intramolecular and fast solvent
modes determine the “sink” under the assumption of the thermal
equilibrium distribution.2,47,68,69In this sense, the present result
of eq 10 may be directly used as the sink function for the fast
modes. As for the last problem, the present approach should be
applicable to such systems eventually, since the ZN formula
can predict the transition probabilities quite well for general
curve crossing problems, although we have to overcome some
problems such as the availability of accurate potentials and
couplings, and also of good experiments with which to be
directly compared.
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Appendix A. Thermally Averaged Transition Probability
Based on the Zhu-Nakamura Formulas

In this appendix, we explicitly present the ZN formulas used
for the evaluation of thermally averaged transition probability
(eq 3)

where V1(Q) is the diabatic potential andPZN(E,Q) is the
nonadiabatic transition probability. Once the nuclear coordinate
Q is specified on the crossing seam surface, we take the direction
normal to the seam acrossQ by

Figure 7. ET rate vs the electronic coupling strengthHAB at T ) 500
K for the asymmetric reaction (∆G ) -3ω2,ω2 ) 749 cm-1). The solid
line represents the present full-dimensional result with use of the ZN
formula; the dotted line represents the full-dimensional result obtained
from the Bixon-Jortner formula. The filled dots represent the effective
one-dimensional result of the quantum mechanical flux-flux correlation
function. The dashed line represents the effective one-dimensional result
with use of the ZN formula.

PT(â,Q) ) â ∫0

∞
dE e-â(E-V1(Q))PZN(E,Q) (A-1)

n ) 3S(Q)/|3S(Q)| (A-2)
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and cut the potential energy surfaces along this direction to
obtain one-dimensional potential curves. Since the Marcus’
normal case is considered in the present model, the potential
curves correspond to the nonadiabatic tunneling case as shown
in Figure 8. In this case, Zhu and Nakamura have provided the
analytical expressions of nonadiabatic transition probability and
the overall transmission probability from the left to the right
along the lower adiabatic potential curve. These expressions
are separately given for three energy regions (E > Eb, Eb > E
> Et, E < Et) in terms of the following two parameters

and

where

(1) E > Eb: The overall transmission probability is given by

wherep is the probability for one passage of the crossing and
takes the form

and ψ is the phase factor coming from the upper adiabatic
potential curve.50-52 If one averages the phase factor, then eq
A-6 becomes the conventional transmission probability with the
LZ probability replaced by eq A-7.

(2) Eb g E g Et: In this case, the energy locates between
the top of the lower adiabatic potential and the bottom of the
upper adiabatic potential. The transmission probability takes the
form

whereW is given by

(3) E < Et: In this energy region, the total transmission
probability is expressed as

where nuclear tunneling is incorporated via the Gamov factor
e-2δ, B(x) ) 2πx2Xe-2x/(xΓ(x)), andσc is the phase due to the
nonadiabatic transition (see refs 50, 51, and 52). The probability
of eq A-10 is always smaller than the penetration probability
through the lower adiabatic potential because of the nonadiabatic
coupling effect. When the diabatic coupling is infinitely strong,
that is, a2 approaches to zero, eq A-10 naturally goes to the
ordinary tunneling probabilityPZN(E) ) e-2δ/(1 + e-2δ).

Appendix B. Effective Mapping Frequency and
One-Dimensional Potentials

One way to define the one-dimensional mapping frequency
is to take the one-dimensional mode along the hopping direction,
that is, the direction normal to the seam surface at MECP. With
normal-mode analysis at MECP of the potentials given by eqs
26 and 27, we can obtain two shifted one-dimensional potential
energy curves as

and

where

and

In eqs B-3 and B-5,λi andλ are the reorganization energy for
the ith mode and the total reorganization energy, respectively.
The second way is to take the effective frequency as

This is the method proposed by Dogonadze.25 The corresponding
potential energy curves are

Figure 8. Schematic two-state adiabatic potentials in the case of
nonadiabatic tunneling.

a2 ) xd2 - 1
p2

(T2
0 - T1

0)2[E2(R0) - E1(R0)]
(A-3)

b2 ) xd2 - 1
E - [E2(R0) + E1(R0)]/2

[E2(R0) - E1(R0)]
2

(A-4)

d2 )
[E2(T1

0) - E2(T1
0)][E1(T2

0) - E1(T2
0)]

[E2(R0) - E1(R0)]
2

(A-5)

PZN(E) ) 4 cos2 ψ
4 cos2 ψ + p2/(1 - p)

(A-6)

p ) exp[- π
4a ( 2

b2 + xb4 - 0.72+ 0l62a1.43)1/2] (A-7)

PZN(E) ) W2

1 + W2
(A-8)

W ) 1 + g5

a2/3 ∫0

∞
dt cos[t3/3 - b2t/a2/3 - g4t/

(0.61a2/3 x2 + b2 + at)] (A-9)

PZN(E) )

B(σc/π)e-2δ

[1 + (0.5xa2/(1 + xa2))B(σc/π)e-2δ]2 + B(σc/π)e-2δ

(A-10)

V1(Q) ) 1
2

ω2Qn
2 + ω′2Qn + ETS (B-1)

V2(Q) ) 1
2

ω2Qn
2 - ω′2Qn + ETS (B-2)
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i

ωi
4λi/∑

i

ωi
2λi (B-3)

ω2′ )
1
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i

ωi
2λi (B-4)

ETS ) 1
4

λ + ∆G (B-5)

ω2 )
1

λ
∑

i
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V1(Q) ) 1
2
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and

with

From the numerical test, we have found that the rate with use
of the effective frequency given by eq B-6 gives an excellent
agreement with the multi-mode simulation in the whole range
of electronic coupling strength under the model of harmonic
potentials and the Condon approximation.

References and Notes

(1) Zhao, Y.; Mil’nikov, G.; Nakamura, H.J. Chem. Phys.2004, 121,
8854.

(2) Zusman, L. D.Chem. Phys.1980, 49, 295.
(3) Burshtein, A. I.Chem. Phys.1979, 40, 289.
(4) Barzykin, A. V.; Frantsuzov, P. A.; Seki, K.; Tachiya, M.AdV.

Chem. Phys.2002, 123, 511.
(5) Calef, D. F.; Wolynes, P. G.J. Phys. Chem.1983, 87, 3387.
(6) Hynes, J. T.J. Chem. Phys.1986, 90, 3701.
(7) Rips, I.; Jortner, J.J. Chem. Phys.1988, 88, 818.
(8) Marcus, R. A.J. Chem. Phys.1956, 24, 966.
(9) Marcus, R. A.; Sutin, N.Biochim. Biophys. Acta1985, 811, 265.

(10) Levich, V. G.; Dogonadze, R. R.Proc. Acad. Sci. USSR (Phys.
Chem.)1959, 124, 9.

(11) Levich, V. G.AdV. Electrochem. Electrochem. Eng.1965, 4, 249.
(12) Ao, P.; Rammer, J.Phys. ReV. Lett 1989, 62, 3004.
(13) Kim, H. J.; Hynes, J. T.J. Chem. Phys.1990, 93, 5211.
(14) Marcus, R. A.J. Phys. Chem.1992, 96, 1753.
(15) Gehlen, J. N.; Chandler, D.; Kim, H. J.; Hynes, J. T.J. Phys.

Chem.1992, 96, 1748.
(16) Gehlen, J. N.; Chandler, D.J. Chem. Phys.1992, 97, 4958.
(17) Song, X.; Stuchebrukhov, A. A.J. Chem. Phys.1993, 99, 969.
(18) Stuchebrukhov, A. A.; Song, X.J. Chem. Phys.1994, 101, 9354.
(19) Kayanuma, Y.; Nakayama, H.Phys. ReV. B 1998, 57, 13099.
(20) Georgievskii, Y.; Stuchebrukhov, A. A.J. Chem. Phys.2000, 113,

10438.
(21) Hush, N. S.Coord. Chem. ReV. 1985, 64, 135.
(22) Landau, L. D.Phys. Z. Sowjetunion1932, 2, 46.
(23) Zener, C.Proc. R. Soc. London, Ser. A1932, 137, 696.
(24) Stueckelberg, E. C. G.HelV. Phys. Acta1932, 5, 369.
(25) Dogonadze, R. R.; Urushadze, Z. D.J. Electroanal. Chem.1971,

32, 235.
(26) Kuki, A. J. Phys. Chem.1993, 97, 13107.
(27) Rips, I.; Pollak, E.J. Chem. Phys.1995, 103, 7912.
(28) Rips, I.J. Chem. Phys.2004, 121, 5356.

(29) Tully, J. C.; Preston, R. K.J. Chem. Phys.1971, 55, 562.
(30) Webster, F.; Rossky, P. J.; Friesner, R. A.Comput. Phys. Commun.

1991, 63, 494.
(31) Coker, D. F.; Xiao, L.J. Chem. Phys.1995, 102, 496.
(32) Zhu, C.; Nobusada, K.; Nakamura, H.J. Chem. Phys.2001, 115,

11036.
(33) Zhu, C.; Kamisaka, H.; Nakamura, H.J. Chem. Phys.2002, 116,

3234.
(34) Zahr, G. E.; Preston, R. K.; Miller, W. H.J. Chem. Phys.1975,

62, 1127.
(35) Heller, E. J.; Brown, R. C.J. Chem. Phys.1983, 79, 3336.
(36) Lorquet, J. C.; Leyh-Nihant, B.J. Phys. Chem.1988, 92, 4778.
(37) Remacle, F.; Dehareng, D.; Lorquet, J. C.J. Phys. Chem.1988,

92, 4784.
(38) Marks, A. J.; Thompson, D. L.J. Chem. Phys.1992, 96, 1911.
(39) Marks, A. J.J. Chem. Phys.2001, 114, 1700.
(40) Topaler, M. S.; Truhlar, D. G.J. Chem. Phys.1997, 107, 392.
(41) Cui, Q.; Morokuma, K.; Bowman, J. M.J. Chem. Phys.1999,

110, 9469.
(42) Miller, W. H. Chem. ReV. 1987, 87, 19.
(43) Nelsen, S. F.; Ismagilov, R. F.; D. A. T., II.Science1997, 278,

846.
(44) Demadis, K. D.; Hartshorn, C. M.; Meyer, T. J.Chem. ReV. 2001,

101, 2655.
(45) Ovchinnikova, M. Y.Theor. Exp. Chem.1982, 17, 507.
(46) Sumi, H.; Marcus, R. A.J. Chem. Phys.1986, 84, 4272.
(47) Walker, G. C.; Akesson, E.; Johnson, A. E.; Levinger, N. E.;

Barbara, P. F.J. Phys. Chem.1992, 96, 3728.
(48) Zhu, C.; Nakamura, H.J. Chem. Phys.1994, 101, 10630.
(49) Zhu, C.; Nakamura, H.J. Chem. Phys.1995, 102, 7448.
(50) Zhu, C.; Nakamura, H.AdV. Chem. Phys.2001, 117, 127.
(51) Nakamura, H.Nonadiabatic Transition: Concepts, Basic Theories

and Applications; World Scientific Pub. Co. Inc.: River Edge, NJ, 2002.
(52) Nakamura, H.J. Theor. Comput. Chem.2005, 4, 127.
(53) Bixon, M.; Jortner, J.J. Phys. Chem.1991, 95, 1941.
(54) Miller, W. H.; Schwartz, S. D.; Tromp, J. W.J. Chem. Phys.1983,

79, 4889.
(55) Fenkel, D.; Smit, B.Understanding Molecular Simulation; Com-

putational Science Series; Academy Press: San Diego, CA, 2002; Vol. 1.
(56) Yamamoto, T.; Miller, W. H.J. Chem. Phys.2004, 120, 3086.
(57) Zhao, Y.; Yamamoto, T.; Miller, W. H.J. Chem. Phys.2004, 120,

3100.
(58) Wang, F.; Landau, D. P.Phys. ReV. Lett. 2001, 86, 2050.
(59) Bixon, M.; Jortner, J.AdV. Chem. Phys.1999, 106, 35.
(60) Zhao, Y.; Mil’nikov, G.Chem. Phys. Lett.2005, 413, 362.
(61) Newton, M. D.; Sutin, N.Annu. ReV. Phys. Chem.1984, 35, 437.
(62) Jean, J. M.; Friesner, R. A.; Fleming, G. R.J. Chem. Phys.1992,

96, 5827.
(63) Topaler, M.; Makri, N.J. Phys. Chem.1996, 100, 4430.
(64) Evans, D. G.; Nitzan, A.; Ratner, M. A.J. Chem. Phys.1998,

108, 6387.
(65) Wynne, K.; Hochstrasser, R. M.AdV. Chem. Phys.1999, 107, 263.
(66) Onuchic, J. N.; Wolynes, P. G.J. Phys. Chem.1988, 92, 6495.
(67) Zhao, Y.; Li, X.; Zhen, Z. L.; Liang, W. Z.J. Chem. Phys.2006,

124, 6495.
(68) Sumi, H.; Marcus, R. A.J. Chem. Phys.1986, 84, 4894.
(69) Jortner, J.; Bixon, M.J. Chem. Phys.1988, 88, 167.

V2(Q) ) 1
2

ω2(Q - Q0)
2 + ∆G (B-7)

Q0 ) 1
ω

x2λ (B-8)

8212 J. Phys. Chem. A, Vol. 110, No. 26, 2006 Zhao et al.


